Nanoscale Order in Metallic Glass

Paul M. Voyles, University of Wisconsin, DMR-0347746

- Fluctuation electron microscopy: study nanoscale spatial fluctuations in diffraction, quantified by variance as a function of scattering vector *V*(*k*).
 - V(k) peak magnitude depends on ordered region length scale and density
 - -V(k) peak position depends on ordered region internal atomic structure.

- Melt-spun Al₉₂Sm₈ metallic glass shows primary Al crystallization of <10 nm crystals at densities >10²⁰ m⁻³.
- Experiments show evidence of local fcc-Al crystallinity in as-spun ribbon:
 - 0.5-2 nm characteristic size
 - reduced by annealing $< T_q$
 - not present in Al₉₂Sm₈ amorphized by deformation
 - may catalyze primary nanocrystallization

Nanoscale Order in Metallic Glass

Paul M. Voyles, University of Wisconsin, DMR-0347746

- Worked with Pamela Tuchscherer, a middle school teacher for 5-week summer RET program with UW MRSEC on Nanostructure Materials.
- Pam developed an inquiry-based instructional module for middle school students exploring the atomic structure of metals via efficient packing of hard spheres.
- Experiments lead students to discover cubic and hexagonal crystal structures in 2D and test packing efficiency of disordered structures.

- Organized symposium Order in Disorder: Probing the Structure of Amorphous Materials at Microscopy and Microanalysis 2004 with J. Mansfield, U. Michigan.
- 22 presentations, >40 attendees from US, Europe, Japan, and Australia
- Themes: applications of fluctuation electron microscopy and EELS, complementary scattering techniques